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The Betti numbers are fundamental topological quantities that describe the k-dimensional connectivity of an
object: �0 is the number of connected components and �k effectively counts the number of k-dimensional
holes. Although they are appealing natural descriptors of shape, the higher-order Betti numbers are more
difficult to compute than other measures and so have not previously been studied per se in the context of
stochastic geometry or statistical physics. As a mathematically tractable model, we consider the expected Betti
numbers per unit volume of Poisson-centered spheres with radius �. We present results from simulations and
derive analytic expressions for the low intensity, small radius limits of Betti numbers in one, two, and three
dimensions. The algorithms and analysis depend on alpha shapes, a construction from computational geometry
that deserves to be more widely known in the physics community.
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I. INTRODUCTION

Topological measures of shape are finding increasing use
in the study of point or coverage processes and the charac-
terization of complex three-dimensional structures �1�. This
is because topology is independent of geometry, and so both
types of information are necessary to fully characterize spa-
tial structure �2,3�. The most commonly studied topological
invariants are the number of connected components �the ze-
roth order Betti number, �0� and the Euler characteristic ��,
the zero-dimensional Minkowski measure from integral ge-
ometry�. This paper also investigates �1 and �2, the higher-
order Betti numbers that count the number of independent
handles �noncontractible loops� and enclosed voids.

The Betti numbers are closely related to the Euler charac-
teristic via the Euler-Poincaré formula, �=�0−�1+ ¯−�m.
For subsets of R, the Euler characteristic is exactly the num-
ber of components. In R2, there are only two independent
quantities from the three, since �=�0−�1. Thus, as � and �0
are already well-known quantities in statistical physics, the
higher-order Betti numbers give intrinsically new informa-
tion only in dimensions three and higher. Nonetheless, it is
instructive to study the Betti numbers directly in both two
and three dimensions as they give a more direct description
of the topology than the Euler characteristic. For example,
recent work on the two-dimensional �2D� Griffiths’ model
has used Betti numbers of the different states to characterize
the phase transition �4�.

In this paper, we present analysis and simulations of the
Betti number signatures of Poisson point patterns. The Pois-
son point process is the most widely studied model in sto-
chastic geometry and is frequently used as a null hypothesis
for comparison with physical systems �5�. In general, a sig-
nature for a point pattern is defined by attaching spheres of
radius � to each point and computing some quantity of in-
terest as a function of �. Thus, the Betti number signatures
contain both topological and geometric information about

the distribution of points in space. In applications, such sig-
nature functions can be used to detect differences between
simulations and physical data, or to provide insight into the
physical processes that generated a particular distribution of
points. Example applications will be the topic of a future
paper.

We give a brief overview of the simulation of Poisson
point processes in Sec. II A. Our computation and analysis of
the Betti number signatures use alpha shapes �6,7�—a con-
struction from computational geometry that is dual to the
union of spheres of radius �. The alpha-shape is a subcom-
plex of the Delaunay triangulation of a set of points, so we
can draw on extensive results about Delaunay complexes of
Poisson-distributed points. We summarize the alpha shape
and Betti number algorithms in Secs. II B and II C. Results
of the simulations are presented in Sec. III. The final Sec. IV
of the paper gives derivations of the low-intensity small-
radius behavior of the Betti numbers of Poisson-distributed
spheres.

II. SIMULATION METHODS

A. Poisson point processes

A Poisson point process in Rd with constant intensity � is
easily simulated in the unit d cube by generating N points
with d coordinates chosen from a uniform random distribu-
tion on �0, 1�. The number of points, N, is a random variable
generated from a Poisson distribution with mean �,

Pr�N = n� = �ne−�/n!

For large values of �, Poisson distributed numbers are well
approximated by a normal �Gaussian� distribution with mean
� and standard deviation ��, i.e.,

Pr�N = n� = �
n−0.5

n+0.5

f�x�dx ,

where f�x� is the normal probabiltiy density function*Electronic address: vanessa.robins@anu.edu.au
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f�x� =
1

�2��
exp�− �x − ��2/2�� .

Given a realization of a Poisson point process in the unit d
cube, label the N points X1 ,X2 , . . . ,XN and place identical
balls of radius � centered at each point, Bd�Xi ,��. The Betti
number signatures are defined to be

�k��� = �k��
i=1

N

Bd�Xi,��� for k = 0,1, . . . ,d − 1.

Algorithms for computing the Betti numbers are described in
the following section. Expected values per unit volume,
E�k���, are estimated as mean values calculated from many
independent realizations of points in the unit d cube.

B. Betti numbers of alpha shapes

The union of balls of radius � centered at the points
X1 , . . . ,XN has a geometric dual called the alpha shape that is
a subset of the Delaunay triangulation of X1 , . . . ,XN. The
nerve theorem of topology guarantees that the Betti numbers
of the union of balls are identical to those of the dual alpha
shape �8�. Since the alpha shape is a discrete simplicial com-
plex, the Betti numbers are computable via linear algebra
techniques for data in any dimensions �9�. The classical al-
gorithm is impractical for large complexes however, and for
points in one, two, or three dimensions �3D� there are more
effective geometric approaches.

In one dimension �1D� there is only the number of con-
nected components to consider, �0���, and this is determined
entirely by distances between adjacent points. For points in
2D and 3D, the Betti numbers may be computed via an in-
cremental algorithm due to Delfinado and Edelsbrunner �10�
that gives �k��� at all values of �. The essential aspects of
their approach are as follows.

First, the simplices of the Delaunay complex—the verti-
ces, edges, triangles, and so on—are ordered by the radius of
the smallest sphere that touches the points of the given sim-
plex and contains no other data points. This radius is called
the alpha threshold, �T. If more than one simplex has the
same alpha threshold, they are ordered from lowest dimen-
sion to highest. The ordering of simplices 	�1 ,�2 , . . . ,�n

such that �T��i���T�� j� if i� j is a filtration. A sequence of
subcomplexes Cj =�i=1

j �i is now built by adding one simplex
at a time. Each k-dimensional simplex either creates a new k
cycle, or destroys a �k−1� cycle. For example, when an edge
is added, it either generates a loop or connects two disjoint
components. The Betti numbers of Cj+1 are related to those
of Cj by

�k�j + 1� = �k�j� + 1 if � j+1 creates a k cycle,

�k−1�j + 1� = �k−1�j� − 1 if � j+1 destroys a �k − 1� cycle.

The problem of determining whether a k simplex creates a k
cycle is nontrivial in arbitrary dimension d. Fast algorithms
based on union-find data structures are possible when k=1
and, by Alexander duality �9�, k=d−1. Thus, this incremen-
tal approach is effective only for points in d=2,3 dimen-

sions. The duality argument requires the complex to be a
subset of the d sphere, but this is easily accounted for by
adding a point at infinity to the Delaunay complex, and an
extra k simplex for each �k−1� face on the convex hull.

Each k simplex in the filtration, as it is added to the com-
plex, is marked +1 if it is found to create a k cycle, and −1 if
it destroys a �k−1� cycle. Then the Betti numbers of the
alpha shapes are calculated as �where the notation script
N	. . .
 means number of�

�0��� = N	+ 1 vertices � �
 − N	− 1 edges � �
 ,

�1��� = N	+ 1 edges � �
 − N	− 1 triangles � �
 ,

�2��� = N	+ 1 triangles � �
 − N	− 1 tetrahedra � �
 .

�1�

Note that these signature functions may be evaluated at arbi-
trary fineness in �, with no additional computational cost or
complexity. A single traversal of the marked simplices, in the
filtration order is all that is required.

C. Periodic boundary conditions

To avoid boundary effects from restricting the domain to
the unit d cube, we build the Delaunay complex with peri-
odic boundary conditions.

For points in 2D, this means the Delaunay complex is a
triangulation of the 2-torus, and the Betti numbers for suffi-
ciently large � are �0=1, �1=2, �2=1. The incremental al-
gorithm for computing the Betti numbers is still valid, pro-
vided the final triangle added to the filtration is marked as
creating a 2-cycle �which we know it must, a priori�. When
� is below the percolation threshold, �1��� may be inter-
preted as the number of holes per unit area. If we use peri-
odic boundary conditions, then above the percolation thresh-
old �1��� includes the cycles around each axis of the torus,
and so the number of holes in the unit square, as one would
intuitively define them, is really �1���−2. This issue is re-
lated to the problem of whether or not to count the spanning
cluster when studying the connected components in percola-
tion theory.

For points in 3D, periodic boundary conditions invalidate
the algorithm for the determination of 2-cycles. The topology
of a unit cube with opposite faces identified is that of a
3-torus: �0=1, �1=3, �2=3, �3=1. Thus, the sequence of
subcomplexes obtained from the filtration are subspaces of
the 3-torus, not the 3-sphere, and the Alexander duality theo-
rem no longer applies.

In practice, we apply the duality algorithm to the
2-cycle detection problem anyway. The result is that exactly
three faces �triangles� from the filtration are incorrectly iden-
tified as “destroying 1-cycles” when in fact they create the
three 2-cycles that are homologous to the three coordinate
planes of the periodic cube. This means there are three extra
triangles marked −1, and three fewer marked +1, than there
would be if we had a direct algorithm for detecting
2-cycles. All other edges, faces, and tetrahedra are correctly
marked ±1, provided the final tetrahedron is identified as
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creating a 3-cycle �which we again know a priori�. Compari-
son with the formulas given in �1� shows that for both k
=1,2,

�k
calc��� = �k

true��� − N	mislabelled triangles � �
 .

If we consider the alpha complex as � increases, it should be
clear that the mislabelled triangles have the smallest alpha
thresholds for which each of the three toriodal 2-cycles exist.
This represents the second percolation threshold: a critical
radius, �2, above which, with probability one, the unoccu-
pied space no longer percolates. Thus, for the mean values of
the first and second Betti numbers we have �for k=1,2�

E�k
calc��� = E�k

true��� for � � �2,

E�k
calc��� = E�k

true��� − 3 for � 	 �2.

D. Implementation

There are three publicly available implementations of al-
pha shapes: Edelsbrunner’s group �11�, Clarkson’s hull code
�12�, and the CGAL library �13,14�. None of these has pro-
vision for periodic boundary conditions, and only the first
has support for computing the Betti number signatures. The
CGAL library �written in C

� has the most general inter-
face, so we use the CGAL implementation of two- and three-
dimensional Delaunay triangulations and alpha shapes and
extend it as follows.

First, N points in the unit square or cube are generated
with uniform random coordinates, and each point is given a
label. Periodic boundary conditions are simulated using
translated copies of the original data points with each trans-
lated copy of a point given the same label as the original.
The simplest approach to generating the translated points is
to map all the original data points to the eight adjacent
squares in 2D, or the 26 adjacent cubes in 3D. This creates a
significant overhead in the number of points to be
triangulated—9N and 27N, respectively. There is also an in-
creasing degree of redundancy for large N, since almost all
of the translated points have no effect on the triangulation
within the original domain. For reasonable numbers of points
�N	50� we can therefore reduce the overhead by translating
only the data points in the appropriate half-cube along each
axis, leading to 4N and 8N points to be triangulated in 2D
and 3D, respectively. The minimum requirement on translat-
ing points that guarantees a correct triangulation is in princi-
pal even less: only points that belong to a Delaunay cell
whose circumsphere intersects the boundary of the unit
square or cube need to be translated to the opposite side �15�.
However, we find that the increased complexity of this ap-
proach outweighs any saving from the reduced number of
translated points.

The second step is to build the Delaunay complex and
alpha shape on the enlarged set of data points using the
CGAL library routines. We must then identify the elements
of the Delaunay complex that comprise the periodic domain.
The criterion we use is that the centroid of the cell �or face,
or edge� is either interior to the unit cube, or lies on one of
the x=0, y=0, or z=0 planes. The topological integrity of the

Delaunay complex with the periodic boundary conditions is
checked via the labels attached to the vertices.

Finally, we implement a filtration data structure and the
incremental Betti number algorithm as described in Sec. II B.
The CGAL alpha-shape data structure gives us direct access
to the alpha thresholds of each simplex �i.e., the cells, faces,
and edges�, so this is relatively straightforward. The C


code is available from the author on request.

The simulations reported in Sec. III were performed on a
PC with Intel Pentium 4 processor. The two-dimensional
simulations involved 1000 realizations with �=105 and ran
overnight. The three-dimensional simulations involved 50 re-
alizations with �=105 and took 5 days. The dramatic in-
crease in time for the 3D simulations is due to the intrinsic
additional complexity of 3D Delaunay complexes and alpha
shapes, the extra points needed to simulate periodic bound-
ary conditions, and the need for both a forward and back-
ward traversal of the filtration to mark the simplices.

III. RESULTS AND ANALYSIS

In this section, we summarize theoretical results and com-
pare these to data obtained from computer simulations of
Poisson point processes in two and three dimensions.

A. 1D

The expected number of components per unit length in a
1D Boolean model is well known �16�. If the intensity of the
Poisson-point process is �, and the shapes are line segments
of length 2� then

E���� = E�0��� = �e−2��.

This result is included for completeness and ease of compari-
son with the two- and three-dimensional cases, see Fig. 1.

B. 2D

For discs of radius � centered at points from a 2D Poisson
point process of intensity �, we study the expectation per

FIG. 1. �Color online� Expectations per unit d volume of the
Euler characteristic, � /�, as a function of the reduced density, �
=�d�d�, for d=1,2 ,3. The quantity �d is the d volume of the unit
d sphere.
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unit area of the following topological quantities: the number
of components, �0���, the number of independent cycles,
�1���, and the Euler characteristic, �=�0−�1. For our simu-
lations, we use an intensity of �=105 in the unit square, and
compute mean values of the Betti numbers from 1000 real-
izations �see Fig. 2�. Results are presented in Figs. 3 and 4.
In the plots of these figures we mark the 2D continuum per-
colation threshold from Ref. �17� of �c=1.128 058 6. The
critical value is included as a reference point only, since the
Betti numbers are not sensitive indicators of percolation.

The expectation per unit area of the Euler characteristic is
known from stochastic geometry to be �5,16�

E���� = ��1 − ��2��e−��2� = ��1 − ��e−�. �2�

This expression is more naturally a function of the reduced
density, �=��2�, and we often use � as the independent
variable rather than the radius �. The differences between the
expression �2� and the computed mean values of the Euler
characteristic are less than 10−4, and decrease as � increases,
see Fig. 2.

The connected components of randomly distributed over-
lapping discs are studied extensively in percolation theory. It
is common in this context to express the expected total num-
ber of components per unit area as the sum

E�0 = �
k=0



�k,

where �k is the expected number of k-mers per unit area �a
k-mer is a cluster built from k discs�. Although there are no
known analytic expressions for E�0 as a function of disc
radius �, integral expressions for �k and low-density expan-
sions are given in Ref. �18�. The expansions for �k are given

in terms of the reduced density for the limit �→0 and pre-
sented in Table I for reference. Their sum gives

E�0���/� = 1 − 2� + 1.5641�2 − 0.6878�3 + 0.2197�4

+ O��5� . �3�

A comparison between this expansion and the computed
mean values obtained from simulations is shown in Fig. 5.
There is extremely close agreement for ��0.5.

An expansion for E�1 may be deduced from the expres-
sions for E�0 and E� above. However, we make an indepen-
dent analysis of the shape of Poisson-Delaunay cells in Sec.
IV B and find that for small �,

E�1���/� = 0.0640�2 + O��3� . �4�

Our simulation data show that this leading order behavior
holds for ��0.3, see Fig. 4.

FIG. 2. �Color online� Deviation from theory of the computed
mean Euler characteristic per unit d volume as a function of the
reduced density, �, for d=2,3. In the 2D case, the mean Euler
characteristic is computed from 1000 simulations of a Poisson point
process with �=105 in the unit square with periodic boundary con-
ditions. In the 3D case, we have used 50 simulations with �=105 in
the unit cube with periodic boundary conditions.

FIG. 3. �Color online� 2D Betti numbers. Results from 1000
simulations of, on average, 105 points in the unit square. Mean
values of the Betti numbers per unit area, �0 �dark blue dots� and �1

�pale magenta dots� are given as functions of the reduced density, �
�top� and the disc area fraction �=1−e−� �bottom�. The percolation
threshold is marked by the dotted vertical line at �c=1.128 058 6,
or equivalently �c=0.676 339.
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The logarithmic axes used in Fig. 4 show that E�0 /�
levels out at 10−5. This is exactly as expected since for large
radius, the alpha shape has one connected component, and
the value of � is 105 for these simulations. As discussed in
Sec. II C, periodic boundary conditions mean that for suffi-
ciently large radius we know �1=2. Thus we would expect to
see E�1 /� level out at 2�10−5 in Fig. 4, but the range in this
plot does not extend to large enough �. This shows that
periodic boundary effects are negligible for the data from
these simulations.

C. 3D

In the three-dimensional Poisson-Boolean model of balls
with radius �, the relevant topological quantities are the
number of components, �0���, the number of independent
handles, �1���, the number of enclosed voids, �2���, and the
Euler characteristic, �=�0−�1+�2. For the simulations we
use an intensity of �=105 in the unit cube and compute mean
Betti numbers from 50 realizations. Results are presented in
Figs. 6 and 7. We again mark the continuum percolation
thresholds in these plots as reference points. Recall that in
three-dimensional percolation there are two critical densities,

�1=0.341 889 �19�, is the point above which a spanning
cluster exists with probability one, and �2=3.5032 �20� is the
density above which the unfilled space no longer percolates.

The expectation per unit volume of the Euler characteris-
tic is again known from stochastic geometry �5� to be

E���� = ��1 − 3� +
3�2

32
�2�e−�, �5�

where � is the reduced density �= 4
3���3. Our computed

mean values match this expression closely, with differences
less than 10−3 and decreasing with � as shown in Fig. 2.

As for the 2D model, the expected total number of com-
ponents per unit volume may be expressed as the sum of
numbers of k-mers. Integral expressions and low-density ex-
pansions for the expected number of k-mers per unit volume,
�k, are given in Ref. �18� and repeated here in Table II. From
these expansions we find that for �→0,

E�0���/� = 1 − 4� + 5�2 − 2.7431�3 + 1.3646�4 + O��5� .

�6�

The computed mean values match this expansion extremely
closely for ��0.3, see Fig. 8.

The leading order behavior for �1 and �2 is derived from
the Poisson-Delaunay analysis in Secs. IV C and IV D where
we show that for small �,

E�1���/� = 0.5747�2 + O��3� , �7�

E�2���/� = 0.015�3 + O��4� . �8�

Again, the computed mean values show exactly this leading
order behavior for ��0.3, see Fig. 7.

Recall from Sec. II C that with periodic boundary condi-
tions and �	�2, the second percolation threshold, there is a
systematic error in the computed mean values of �1 and �2.
For the data presented here, the error is 3�10−5, which is

TABLE I. Coefficients in the expansions of �k for the 2D
Poisson-Boolean model of discs with radius � for the limit �
=���2→0. Results are from Ref. �18�.

�0 �1 �2 �3 �4

�1 /� 1 −4 8 −10.6667 10.6667

�2 /� 2 −11.3079 32.2915 −62.0415

�3 /� 4.8720 −35.3346 129.6895

�4 /� 13.022 −114.823

�5 /� 36.728

FIG. 4. �Color online� 2D Betti numbers. Exactly the same data
as in Fig. 3 but plotted here with logarithmic axes to emphasize the
quadratic scaling of �1 at small �. The solid black line shows the
leading order behavior E�1 /��0.0640�2 derived in Sec. IV B.

FIG. 5. �Color online� 2D connected components. Here we com-
pare the computed mean values �blue dots� of the number of con-
nected components, �0 /� with the theoretical expansion �pale blue
line� for small � given in �3�.
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three orders of magnitude less than the value of E�1��2� /�
and four orders less than E�2��2� /�. A close inspection of
Fig. 7 shows that this error is significant only for the com-
puted values of E�1��� /� with �	6.

IV. POISSON-DELAUNAY CELL ANALYSIS
OF ALPHA SHAPES

The probability distribution for the size and shape of a
cell in the Delaunay complex of a Poisson point process is
completely characterized by a result due to Miles �21� and
given in Eq. �9�. The criteria for a simplex from the Poisson-
Delaunay complex to belong to an alpha shape are based
only on the size and shape of that simplex, and that of its
adjacent simplices. The ergodicity of the Poisson-Delaunay

complex means that the expected number of k-dimensional
simplices, �, in a bounded region, R, that satisfy condition A,
is related to the probability that a randomly selected simplex
has property A,

EN	� � R� is A
 = �k�R�Pr�A� ,

where �k is the intensity of the k-dimensional cells, not the
vertices �which have intensity �0=��. Since the Betti num-
bers of alpha shapes are determined by numbers of simplices
with certain properties, see �1�, the Poisson-Delaunay cell
�PDC� distribution can be used to obtain results about the
Betti numbers of an alpha shape.

This section summarizes the relevant results about the
PDC distributions in two and three dimensions, and then
derives low-intensity expansions for the expectation per unit
area of �1 in 2D and expectation per unit volume of �1 and
�2 in 3D.

A. Distributional properties of PDCs

For an extensive review of Poisson-Delaunay cells, see
Ref. �22�.

TABLE II. Coefficients in the expansions of �k for the 3D
Poisson-Boolean model of balls with radius � for the limit �
= 4

3���3→0. Results are from Ref. �18�.

�0 �1 �2 �3 �4

�1 /� 1 −8 32 −85.3333 170.6667

�2 /� 4 −49 302.2238 −1250.5030

�3 /� 22 −359.4203 2959.1209

�4 /� 139.7867 −2842.60

�5 /� 964.68

FIG. 6. �Color online� 3D Betti numbers. Results from 50 simu-
lations of, on average, 105 points in the unit cube. Mean values of
the Betti number per unit volume, �0 �dark blue dots�, �1 �pale
magenta dots�, and �2 �mid-toned red dots�, are plotted as functions
of the reduced density �= 4

3��3 �top� and ball volume fraction �
=1−e−� �bottom�. The two critical densities from percolation
theory are marked by dotted black lines at �1=0.341 889 ��1

=0.289 573� and �2=3.5032 ��2=0.9699�.

FIG. 7. �Color online� 3D Betti numbers. The same results as in
Fig. 6 but plotted with logarithmic axes to show the power-law
scaling of �1 and �2 for small �. The solid black lines show the
leading order behavior of E�1 /��0.5747�2, and E�2 /�
�0.015�3 derived in Secs. IV C and IV D.
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We start by considering a Poisson point process with in-
tensity � in Rm. A Poisson-Delaunay cell is an
m-dimensional simplex, i.e., the convex hull of m+1 points
X0 , . . . ,Xm from the Poisson point process, such that there
exists an �m−1�-sphere that has each point X0 , . . . ,Xm on its
boundary and no other points either on its boundary or in its
interior. This is the circumsphere of X0 , . . . ,Xm; let c and r
denote the circumcenter and circumradius, respectively. The
vertices of a PDC are given in vector form by Xi=c+rui,
where ui is a unit vector pointing from the center to the point
Xi. The circumradius is a measure of the size of a simplex,
and the unit vectors ui specify its shape.

The distribution of PDCs is completely specified by the
following probability density function �pdf�. This result is
due to Miles �21�, and implies that the circumradius of a
PDC is independent of the positions of its vertices;

hm�r,u0, . . . ,um� = a��,m��mrm2−1 exp�− ��mrm� . �9�

The constant �m=�m/2 /��m /2+1� is the volume of the
m-dimensional unit sphere, and

a��,m� =
��m2+1�/2��m2/2�	2����m + 1�/2�
m

mm−2��m/2�2m+1���m2 + 1�/2�
.

The dependence of hm on the ui is hidden in the function �m,
defined as the volume of the m-simplex with vertices at
u0 , . . . ,um. It is therefore a constant, 1 / �m!�, times the deter-
minant of a square matrix with m rows containing the vectors
�ui−u0�, for i=1, . . . ,m.

Various distributional properties of PDCs can be derived
from this pdf. In particular, Muche �23,24� has simplified the
pdf for the two- and three-dimensional cases, finding in 2D,

f2�r,�1,�2� = 2����2r3 exp�− ��r2�

�
2

3�
sin

�1

2
sin

�2

2
sin

�1 + �2

2
, �10�

where 0�r� is the circumradius, 0��2�2�−�1, and
0��1�2� are the central angles X0cX1 and X1cX2.

In 3D, we can choose a coordinate system so that the
circumcenter is at the origin, and three points �X1 ,X2 ,X3� of
the tetrahedron lie in the plane x=cos �, where � is the angle
between the normal to this face �i.e., the positive x axis� and
one of its vertices. The y and z coordinates of the vertices in
this triangular face are then determined by the central angles
�1 and �2. The distributional properties of this face are those
of a “typical” face in a Poisson-Delaunay complex. The
fourth vertex of the tetrahedron is specified by the height of
the tetrahedron, h, and an angle �. Muche �23� showed that
the pdf for a Delaunay tetrahedron separates into factors

f3�r,�,h,�1,�2,�� = fR�r�f�,H��,h�f���1,�2�f����
�11�

with marginal densities

fR�r� =
32�3�3

9
r8 exp�−

4��

3
r3�, 0 � r �  ,

f�,H��,h� =
105

64
h sin5 �, 0 � h � 1 + cos �, 0 � � � � ,

f���1,�2� =
16

3�2�sin
�1

2
sin

�2

2
sin

�1 + �2

2
�2

,

0 � �2 � 2� − �1, 0 � �1 � 2� ,

f���� =
1

2�
, 0 � � � 2� .

B. Empty triangles in 2D

We now derive conditions on a Poisson-Delaunay cell in
R2 that guarantee the 2-simplex is excluded from the alpha
shape, but all its edges are included in the alpha shape. This
implies the existence of a nonbounding 1-cycle �a hole� that
we refer to as a � loop. From �10� we can write down an
integral for the probability, P����, that a PDC gives us a �
loop in the alpha shape. Then, in a region R, the expected
total number of holes at any radius �, is bounded by

E�1��� � �2�R�P���� ,

where �2=2� is the intensity of triangles in a 2D Poisson-
Delaunay complex.

The conditions on the size and shape of a triangle to gen-
erate � loop are that

�1� all edges belong to the alpha shape, i.e., lmax�2�;
�2� the 2-simplex is excluded from the alpha shape, i.e.,

the circumradius satisfies r	�;
�3� the circumcenter must be interior to the triangle, i.e.,

FIG. 8. �Color online� 3D connected components. The computed
mean values of �0 /� �blue dots� compared to the low-intensity
expansion �pale blue line� given in �6�.
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it is an acute triangle and the largest vertex angle satisfies
�max�� /2.

The length of an edge in a triangle is related to the angle
at the opposite vertex via l=2r sin �. Thus, the condition
lmax�2� implies that r�� / sin��max�. The marginal density
for the largest angle at a vertex of a Poisson-Delaunay tri-
angle is known to be �22, p.398�

fmax���

= �
2

�
��3� − ��sin 2� − cos 2� + cos 4�� ,

�

3
� � �

�

2
,

4

�
�sin � + �� − ��cos ��sin � ,

�

2
� � � � . �

Thus an integral expression for P���� is

P� = �
�/3

�/2 �
�

�/sin �

2����2r3e−��r2
fmax���drd� . �12�

To evaluate this integral, we start with an expression for
the indefinite integral of the circumradius pdf,

G�r� =� 2����2r3e−��r2
dr = − ���r2 + 1�e−��r2

.

Evaluating with the limits of integration from �12� we obtain

G��,�� = �� + 1�e−� − � �

sin2 �
+ 1�e−�/sin2 �,

where we have simplified notation by using the reduced den-
sity, �=���2. The second integral with respect to the angle
� does not have an analytic solution. However, we can ob-
tain an approximate expression for small � �i.e., small �� by
using a Taylor expansion. First note that

�x + 1�e−x = 1 −
x2

2
+

x3

3
−

x4

8
+ ¯ ,

The first term in the series for G�� ,��, and consequently the
leading order term of P�, is therefore �2. The coefficient of
� j, for j�2 in the series for P� is therefore given by the
integral

P�
�j� =

�− 1� j−1�j − 1�
j!

�
�/3

�/2 �1 −
1

sin2j �
� fmax���d� .

To evaluate these integrals requires only standard techniques
from real calculus; for the first few terms we have

P� = 0.032 00�2 − 0.034 22�3 + 0.018 35�4 + O��5� .

Since the intensity of Delaunay cells is 2�, we have that the
expectation per unit area of the first Betti number for small �
is

E�1��� � 2�P� � 0.0640��2.

In fact this lower bound on E�1��� is an asymptotic expres-
sion as �→0. This is because a connected cluster of at
least three discs is needed to create a � loop, and at least

four overlapping discs are necessary to create a nonbounding
1-cycle with four or more edges. We know from the cluster
expansions in Table I, however, that the leading order term as
�→0 for the number of k-mers is �k−1. Thus there can be no
other contribution to the �2 coefficient in a series expansion
of E�1���. Indeed, in the limit of small �, our simulations
show exactly this behavior—see Fig. 4.

C. Empty triangles in 3D

We can derive a similar integral expression to that above
for the probability of a � loop in R3. However, in three
dimensions not every � loop represents an independent
1-cycle in the homology group. To see why this is the case,
consider a cage consisting of the six edges of a tetrahedron.
There are four � loops in this cage but only three indepen-
dent 1-cycles, since the fourth � loop is the sum of the other
three. Nevertheless, using a similar argument to that in the
preceding section, in the limit of small �, or small �
= 4

3���3, we can assume that the � loops are isolated and
that in a region R,

E�1��� � �2�R�P���� ,

where �2= 48
35�2� is the intensity of faces in a 3D Poisson-

Delaunay complex.
The conditions for the existence of a � loop in a 3D

Poisson-Delaunay complex are essentially the same as those
in two dimensions, except that they now apply to a typical
face of a 3D PDC:

�1� all edges of the typical face belong to the alpha-shape,
i.e. lmax�2�;

�2� the circumradius of the face satisfies �	�;
�3� the circumcenter of the face must be in the relative

interior of the triangle, i.e., the largest vertex angle in a typi-
cal face satisfies �max�� /2.
We use the relationship between edge length and opposite
angle again so that condition �1� above becomes �
�� / sin��max�. We also use the relationship between the face
circumradius ��� and tetrahedron circumradius �r� of �
=r sin �. Thus, an integral expression for P���� in the three-
dimensional setting is

P� = �
�/3

�/2 �
�

�/sin � �
0

�

fmax���fR� �

sin �
� 1

sin �
f����d�d�d� .

The densities are

f���� =
105

64
�

0

1+cos �

h sin5 �dh

=
105

128
sin5 ��1 + cos ��2,

fR� �

sin �
� =

3

2
�4

3
���3 �8

sin8 �
exp�−

4

3
��

�3

sin3 �
� ,
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fmax��� = �
8

�2 sin2 ���3� − ���3 − 2 sin2 �� − �9 − 16 sin4 ��sin � cos �� , � � ��

3
,
�

2
� ,

8

�2 sin2 ���� − ���3 − 2 sin2 �� + 3 cos � sin �� , � � ��

2
,�� . �

The expression for fmax��� is due to Muche �22, p. 399�. We
begin with the � integral

F��� = �
0

� �8

sin4 �
�1 + cos ��2 exp�−

4

3
��

�3

sin3 �
�d� .

An expression for F��� may be given �using MATHEMATICA�
in terms of Meijer G functions and these are then integrated
with respect to � to find

H��,�� =
315

256
�4

3
���3�

�

�/sin �

F���d�

=
− 35

128�3
�6Z3M1�Z2� + Z3M2�Z2���

�/sin �,

where Z= � 4
3���3� /2, and M1, M2 are the Meijer G func-

tions,

M1�z� = G3,5
4,1�z�−

1
2;−

1
3,

1
3

−
1
2,−

1
6,

1
6 ,

1
2;−

3
2

�� ,

M2�z� = G3,5
4,1�z�−

1
2;

1
3 ,

2
3

−
1
2,−

1
6,

1
6 ,

1
2;−

3
2

�� .

Meijer G functions are defined by integrals of gamma func-
tions �25�. The form used within MATHEMATICA is

Gp,q
m,n�z�a1, . . . ,ap

b1, . . . ,bq
��

=
1

2�i
�

C

� j=1
m ��bj + s�� j=1

n ��1 − aj − s�
� j=n+1

p ��aj + s�� j=m+1
q ��1 − bj − s�

z−sds .

where the contour C divides the complex plane into two
unbounded regions and separates the poles of ��1−ai−s�
and the poles of ��bi+s�.

Both M1�z� and M2�z� diverge as z→0. The products
Z3Mi�Z2�→0 as Z→0, however, so we determine Taylor ex-
pansions about Z=0 for these terms. The zeroth and first
order terms vanish and the second derivative has the value

d2

dZ2 �6Z3M1�Z2� + Z3M2�Z2��Z=0 = 13.8564 = A .

Thus, to second order in �= 4
3���3:

H��,�� �
− 35

128�3

A

2
��

2
�2� 1

sin6 �
− 1� .

We can now compute the integral with respect to � of
H�� ,��fmax��� and obtain the small � limit of

P���� �
− 35

128�3

A�2

8
�

�/3

�/2 � 1

sin6 �
− 1� fmax���d�

=
35

128�3

A

8
� 4

�2 −
1

4
��2.

The expectation per unit volume of the first Betti number for
small � is therefore

E�1 �
48

35
�2�P� �

�3A

64
�4 −

�2

4
���2 = 0.5747��2.

This coefficient is exactly that obtained by comparing the
expansions for � and �0, and agrees well with the value
obtained in simulations.

D. Empty tetrahedra in 3D

Finally, we consider the existence of a 2-cycle in an
alpha-shape formed by the four faces of a single Poisson-
Delaunay tetrahedron. The conditions for this to occur are
that

�1� all faces belong to the alpha shape, i.e., �i��, where
�i is the circumradius of the face opposite vertex Xi;

�2� the circumcenter is not covered by the union of balls
of radius �, i.e., the tetrahedron circumradius satisfies r	�;

�3� the circumcenter must be interior to the tetrahedron.
The conditions �1� and �3� both relate to the angle �i, be-
tween the outward-pointing normal to a face and a vector
from the circumcenter to a vertex on that face. The circum-
radius of face-i is �i=r sin �i, so condition 1 becomes r
�� / sin �i. The condition for the circumcenter to be interior
to the tetrahedron requires that �i�� /2 for i=0,1 ,2 ,3.
Thus an integral expression for an empty tetrahedron is

Ptet = �
�0

�/2 �
�

�/sin �

fmax���fR�r�drd� ,

where fR�r� is the marginal pdf for the tetrahedron circum-
radius defined in �11� and fmax��� is an unknown pdf for the
largest face-normal vertex angle of a PDC. The lower limit,
�0, is the angle for a regular tetrahedron and is �0

=arccos 1
3 =70.53°.

Without knowing fmax���, we can still find the leading
order term for Ptet in the limit of small �. First, the indefinite
integral for the circumradius is
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G�r� =� 3

2
�4

3
���3

r8 exp�−
4

3
��r3�dr

= − ��4

3
��r3�2

2
+

4

3
��r3 + 1�

�exp�−
4

3
��r3� = − � x2

2
+ x + 1�exp�− x� ,

where we have simplified notation by using the reduced den-
sity, x= 4

3��r3. The Taylor expansion for small x is

− � x2

2
+ x + 1�e−x = − 1 +

x3

6
+ O�x4� ,

so that to highest order in �= 4
3���3,

G��,�� �
�3

6
� 1

sin9 �
− 1� .

In terms of Ptet we have

Ptet �
�3

6
�

�0

�/2

fmax���� 1

sin9 �
− 1�d� . �13�

We are unable to derive an analytic expression for fmax���,
so we estimate it by simulation and calculate a numerical
approximation to Ptet. The Poisson point process is ergodic,
so the simplest technique for simulating Poisson-Delaunay
cells is to build the Delaunay complex for a large number of
points in a cube. The distribution of tetrahedra in a very large
complex is approximately the same as that obtained from
many independent realizations. We generated 106 points with
uniform random coordinates in �−1,1�3, built the Delaunay
complex, and discarded tetrahedra with circumcenters within
a 0.2 margin of the boundary to minimize edge effects. This
yielded over 4 million Poisson-Delaunay tetrahedra. The
probability density for the typical face-normal vertex angle is
known to be �23�

f��� =
105

128
sin5 ��1 + cos ��2

and provides a check on our simulation. Normalized histo-
grams for the typical and the largest face-normal vertex
angle in a PDC are shown in Fig. 9. The numerical approxi-
mation to the integrand in �13� is shown in Fig. 10. The area
under the curve as calculated from this data is 0.0023. Now,
since the intensity of Delaunay cells is �3= 24

35�2�, we have
that the expectation per unit volume of the second Betti num-
ber in the limit of small � is

E�2��� �
24

35
�2�Ptet � 0.015��3.

Again, we know this result is an asymptotic one because 2
-cycles that involve more than the faces of a single Delaunay
tetrahedron are necessarily built from five or more

overlapping balls. As we see in Table II, the expected num-
ber of such clusters has leading order �4 as �→0.

E. Further analysis

In the study of percolation theory or coverage processes,
the total number of connected components is studied via a
cluster expansion using expressions for the number of clus-
ters built from k disks �16,18�. A similar approach may be
possible for the number of holes in the 2D Poisson-sphere
model. In Sec. IV B we derived an expression for P� the
number of holes bounded by three edges. The next term to

FIG. 9. �Color online� Blue dots show the normalized histogram
for the typical face-normal vertex angle, f typ, obtained from a simu-
lation of over four million tetrahedra. The data agree well with the
known pdf for this quantity which is plotted as the pale-blue solid
curve. The red dots mark the normalized histogram for the largest
face-normal vertex angle, fmax. We use this as a numerical approxi-
mation to fmax���.

FIG. 10. �Color online� Blue dots show the numerical approxi-
mation to the integrand in Eq. �13� over the domain of integration
arccos 1

3 ���
�

2 .
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consider is P�, the number of holes bounded by k=4 edges.
An expression for P� would require a joint distribution for
two neighboring Poisson-Delaunay triangles. Alternatively, it
may be possible to adapt Miles’ work �26� on Poisson-
generated k figures to study this expansion for k-bounded
holes in the Poisson alpha shape.
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